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Abstract

This paper reports on a numerical study of the friction factor-modified Reynolds number product, f � ReM, for fully developed, lam-
inar flows of pseudoplastic and dilatant fluids in rectangular ducts. Constitutive equations for the apparent viscosity that span from the
low shear rate Newtonian region through the high shear rate Newtonian region were utilized, and a shear rate parameter was defined that
determines the flow regime where the duct is operating. Numerical results for f � ReM in all flow regimes are included along with cor-
relation equations. Errors associated with applying power law solutions to flows of weakly non-Newtonian fluids are discussed.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Pseudoplastic and dilatant fluids are non-Newtonian flu-
ids that are purely viscous, time-independent, and that
exhibit no yield stress. Their apparent viscosity, ga, is a
function of shear rate, _c, and for pseudoplastic (i.e.,
shear-thinning) fluids, decreases with increasing shear rate
from a maximum value of g0 (the zero shear rate viscosity)
to a minimum value of g1 (the infinite shear rate viscosity)
as shown pictorially in Fig. 1. Five distinct regions may be
defined: A low shear rate Newtonian region, Region I; a
low shear rate transition region, Region II; a power law
region, Region III; a high shear rate transition region,
Region IV; and a high shear rate Newtonian region,
Region V. Dilatant (i.e., shear thickening) fluids behave
in a similar fashion except that the slope in Region III is
positive so that g1 > g0. Since any given flow field may
contain shear rates in more than one of the above regions,
it is important when solving flow problems to utilize consti-
tutive equations that span the entire shear rate range. Solu-
0017-9310/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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tions may otherwise be inapplicable to the physical flow
conditions. For example, the power law model,

gaP ¼ K _cn�1 ð1Þ

where gaP is the power law apparent viscosity, K is the fluid
consistency, and n is the flow index (n < 1 for pseudoplastic
fluids, n > 1 for dilatant fluids, and n = 1 for Newtonian
fluids), overestimates the apparent viscosity of pseudoplas-
tic fluids in the areas of the flow field where the shear rates
are in Regions I and II and underestimates it where the
shear rates are in Regions IV and V (the opposite is true
for dilatant fluids). Furthermore, it predicts an infinite
apparent viscosity wherever the shear rate goes to zero,
for example, along the centerline of an axisymmetric duct.
Nevertheless, an extensive set of solutions that utilize the
power law model is available in the literature. But care
must be exercised when applying these solutions to ensure
that the shear rates throughout the flow field are in Region
III so that the solutions apply.

Models that span the entire shear rate range have been
defined. However, these generally contain one or more fluid
properties that differ from g0, g1, K, and n. This compli-
cates the comparison of results obtained using such models
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Nomenclature

A duct cross-sectional area
a duct half-height
b duct half-width
dH hydraulic diameter
f Darcy friction factor
K power law fluid consistency
m fluid parameter in Cross model
n flow index
P pressure
Re Newtonian Reynolds number based on gN

Reg generalized Reynolds number
ReM modified Reynolds number
Re0 Newtonian Reynolds number based on g0

Re1 Newtonian Reynolds number based on g1
u, v, w velocity components in the x, y, and z direc-

tions, respectively
�u bulk fluid velocity
x, y, z coordinate directions

Greek symbols

a* duct width-to-height aspect ratio
b0 MPL shear rate parameter based on g0

b1 MPL shear rate parameter based on g1
b* EMPL shear rate parameter
_c shear rate
ga apparent viscosity
gaP power law apparent viscosity
gN Newtonian fluid viscosity
gP power law reference viscosity
g0 zero shear rate viscosity
g1 infinite shear rate viscosity
g* EMPL reference viscosity
g�MPL MPL reference viscosity
k fluid parameter in Cross model
q fluid density

Subscripts

yx x-direction quantity on a y-plane
zx x-direction quantity on a z-plane

Superscript

+ refers to a dimensionless quantity
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to existing results generated with the power law model in
those cases where the latter solution applies. For example,
Cross [1] proposed the following model for pseudoplastic
fluids:

ga ¼
g0 � g1

1þ k � _cm

� �
þ g1 ð2Þ

Here, m is a dimensionless fluid property, and k is a param-
eter such that k�1/m is that shear rate where the apparent
viscosity attains a value equal to the average of the limiting
viscosities, g0 and g1. Thus, the flow curve is defined by
Fig. 1. Typical flow curve of a pseudoplastic (i.e., shear-thinning) fluid:
Region I – low shear rate Newtonian region; Region II – low shear rate
transition region; Region III – power law region; Region IV – high shear
rate transition region; Region V – high shear rate Newtonian region.
four properties, but the power law properties, K and n,
are absent from this model and the properties m and k ap-
pear instead.

Dunleavy and Middleman [2] proposed a model for the
flow curve of pseudoplastic fluids in Regions I through III
which maintains the power law parameters K and n:

ga ¼
g0

1þ g0

gaP

¼ g0

1þ g0

K � _c1�n
ð3Þ
This model, termed the modified power law (MPL) model,
provides a flow curve that approaches the low shear rate
Newtonian viscosity as the shear rate approaches 0 and
the power law apparent viscosity when the shear rate be-
comes sufficiently large. A smooth transition occurs be-
tween these two regions. However, since Regions IV and
V are missing from this model, care must be exercised when
utilizing Eq. (3) in those instances where the flow field con-
tains shear rates that exceed those of Region III.

The MPL model has been used to solve several problems
of engineering interest, including the friction factor-modi-
fied Reynolds number product, f � ReM, in hydrodynami-
cally fully developed, laminar duct flows. For example,
Brewster and Irvine [3] solved the circular duct problem,
Capobianchi and Irvine [4] calculated the solution for
annular ducts, and Park et al. [5] evaluated the values for
rectangular ducts. The latter study includes experimental
data obtained utilizing three different aqueous solutions
of sodium carboxymethyl cellulose and shows good agree-
ment between the measured and numerical values, with the
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experimental data falling within ±4.9% of the numerical
results.

Brewster and Irvine [3] defined a shear rate parameter,
b0, whose value determines where the duct is operating

b0 ¼
g0

gP

¼ Reg

Re0

: gP ¼
K

ð�u=dHÞ1�n : Re0 ¼
q�udH

g0

:

Reg ¼
q�udH

gP

ð4Þ

Here, gP is the power law reference viscosity, �u is the bulk
fluid velocity, dH is the hydraulic diameter, q is the fluid
density, and Re0 and Reg are the Newtonian and the gener-
alized (i.e., power law) Reynolds numbers, respectively.
Furthermore, a modified Reynolds number, ReM, was
introduced given by

ReM ¼
q�udH

g�MPL

¼ Re0 þ Reg : g�MPL ¼
g0

1þ b0

ð5Þ

where g�MPL is a reference viscosity. For a given duct, small
values of b0 indicate that the duct is operating in the low
shear rate Newtonian region so that f � ReM and g�MPL ap-
proach their respective Newtonian values. If b0 is suffi-
ciently large, then the duct is operating in the power law
region and f � ReM and g�MPL approach the power law val-
ues. At intermediate values of b0, the duct is operating in
the low shear rate transition region. Then f � ReM and
g�MPL attain values between the Newtonian and the power
law values, their magnitudes dependent on the value of b0.

The Capobianchi and Irvine [4] study proposed an anal-
ogous MPL model for dilatant fluids that provides a low
shear rate transition region by blending the apparent vis-
cosities of Regions I and III in the same manner as in the
MPL expression for pseudoplastic fluids

ga ¼ g0 � 1þ gaP

g0

� �
¼ g0 � 1þ K

g0

� _cn�1

� �
ð6Þ

The same definitions for b0 and ReM were used except that
g�MPL was redefined as

g�MPL ¼ g0 1þ 1

b0

� �
ð7Þ

The values of f � ReM and g�MPL again depend on the value
of b0.

The present study calculates f � ReM for hydrodynami-
cally fully developed laminar flows of pseudoplastic and
dilatant fluids in rectangular ducts. In contrast to earlier
studies, it utilizes constitutive equations that span the
entire shear rate range so that the results are applicable
for all shear rate conditions that may exist in the duct.
These are derived from the MPL expressions, Eqs. (3)
and (6), and contain only the fluid properties g0, g1, K,
and n. A shear rate parameter and reference viscosities
are defined that serve the analogous purposes as the corre-
sponding parameters used with the MPL models. The solu-
tions are a function of this shear rate parameter and have
values that range from the Newtonian value when the shear
rate parameter is either in the low or high shear rate New-
tonian regions, to the power law value when the shear rate
parameter is in the power law region, to intermediate val-
ues when the duct is operating in either of the transition
regions, Regions II or IV. It should be noted that the cur-
rent results cannot be extracted by simply re-parametrizing
existing results because the latter are generated using con-
stitutive equations that are valid over only a portion of
the shear rate range. Furthermore, the f � ReM values for
ducts operating in Region IV are particularly significant
since there appears to be no data in the literature in this
regime. Finally, the results show that significant errors
occur when applying the power law solution to flows of
weakly non-Newtonian fluids (i.e., fluids for which g0 and
g1 are of the same order) even for cases where the shear
rates are everywhere in Region III.

2. Analysis

2.1. Definition of the extended modified power law (EMPL)

constitutive equations

The goal is to define constitutive equations for pseudo-
plastic and dilatant fluids that span the entire shear rate
range while containing only the properties g0, g1, K, and
n. For pseudoplastic fluids, a constitutive equation that
meets these requirements may be generated by combining
the MPL models, Eqs. (3) and (6), as follows. First, it
may be observed that if g1 replaces g0 in Eq. (6), the result-
ing expression is suitable to describe the flow curve of
pseudoplastic fluids in Regions III, IV, and V. If this
expression is then added to the MPL equation for pseudo-
plastic fluids, Eq. (3), the flow curve given by the resulting
sum has the proper shape but everywhere overestimates the
apparent viscosity by the power law apparent viscosity, gaP.
Thus, subtracting gaP from this sum gives

ga ¼
g0

1þ g0

gaP

þ g1 ð8Þ

But when _c approaches 0 in Eq. (8), ga approaches g0 + g1
rather than g0. This is corrected by subtracting g1 from the
numerator of the first term on the right hand side, giving

ga ¼
g0 � g1
1þ g0

gaP

þ g1 ¼
g0 � g1

1þ g0

K � _c1�n
þ g1 ð9Þ

A model for dilatant fluids may be constructed by apply-
ing the same procedure except that g1 replaces g0 in Eq. (3)
rather than in Eq. (6), and that the resulting expression is
added to Eq. (6). Also, the final correction is achieved by
subtracting g0 rather than g1. The resulting model for
dilatant fluids is then

ga ¼
g1 � g0

1þ g1
gaP

þ g0 ¼
g1 � g0

1þ g1
K � _c1�n

þ g0 ð10Þ

Since Eqs. (9) and (10) were derived from the MPL
expressions, and because they extend the applicable range
of the MPL models to the entire shear rate regime, they



Fig. 2. Geometry of the rectangular duct problem.
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are termed the extended modified power law (EMPL) mod-
els. Furthermore, the first consideration implies that the
transition regions, Regions II and IV, are generated by
the same physics that led to the MPL models. It may be
shown that the apparent viscosity predicted by the EMPL
equations approaches the MPL expressions when the shear
rates are between the power law and Newtonian regions,
provided that g0 and g1 differ sufficiently from each other.
However, for weakly non-Newtonian fluids, a true power
law region fails to become completely established because
the flow curve begins its transition to the high shear rate
Newtonian region before the low shear rate transition
region is able to complete its transformation to power
law behavior. The EMPL models then blend Regions II,
III, and IV into a smooth, continuous transition region
in the same fashion as the Cross and other models that
are valid for the entire shear rate range. As will be shown,
the consequence for weakly non-Newtonian fluids is that
solutions that utilize the power law model are inapplicable
even when the shear rate in the entire flow field is in Region
III.

For pseudoplastic fluids, the similarity of the EMPL
model, Eq. (9), to the Cross model, Eq. (2), should be
noted, and these become equivalent if m = 1 � n and
k = g0/K. The EMPL model was used instead of the Cross
model because the latter as originally proposed fails to sat-
isfy the goal of having only the fluid properties g0, g1, K,
and n in the definition, and because no equivalent Cross
model was given for dilatant fluids. Finally, for Newtonian
fluids, the EMPL models predict a constant value for the
apparent viscosity as may be verified by setting g0 and
g1 equal to the Newtonian viscosity, gN.

2.2. Analysis of the rectangular duct problem

The EMPL models were used to solve the f � ReM prob-
lem in rectangular ducts. The flows considered are hydro-
dynamically fully developed, incompressible, laminar
flows of pseudoplastic and dilatant fluids in rectangular
ducts with negligible viscous dissipation. All fluid proper-
ties are assumed constant except for viscosity which is
assumed to be a function of shear rate according to the
EMPL models. The duct, shown schematically in Fig. 2,
has a height of 2a and a width of 2b, and has coordinate
axes located at its center with the x-axis aligned along
the longitudinal (i.e., flow) direction and the y and z axes
parallel to the height and width of the duct, respectively.
The governing momentum equation for this case is then

o

oy
ga;yx

ou
oy

� �
þ o

oz
ga;zx

ou
oz

� �
¼ dP

dx
ð11Þ

where P is pressure and the subscripts yx and zx in the
apparent viscosity terms are coordinate direction pairs that
indicate the plane and direction, respectively, of the shear
rate in the apparent viscosity expressions. Because of sym-
metry and of the no-slip condition, the appropriate bound-
ary conditions are
ou
oz

� �
ðy;z¼0Þ

¼ 0 :
ou
oy

� �
ðy¼0;zÞ

¼ 0

uðy; z ¼ bÞ ¼ 0 : uðy ¼ a; zÞ ¼ 0

ð12Þ

Furthermore, the global continuity equation is given by

�u ¼ 1

A

Z
A

udA ¼ 1

ab

Z a

y¼0

Z b

z¼0

uðy; zÞdzdy ð13Þ

where A is the cross-sectional area of the duct.
For incompressible, purely viscous, non-Newtonian flu-

ids in simple shear where the only non-zero velocity com-
ponent is u (function of y and z only), the shear rates in
the expressions for ga,yx and ga,zx in Eq. (11) are equal
and are given by (see Hartnett and Kostic [6] for a more
complete discussion)

_c ¼ _cyx ¼ _czx ¼
ou
oy

� �2

þ ou
oz

� �2
( )1=2

ð14Þ

To evaluate f � ReM for the above problem, Eqs. (11)–
(14) are first non-dimensionalized using the following
definitions:

yþ ¼ y
dH

: zþ ¼ z
dH

: uþ ¼ u
�u

: _cþ ¼ _c
�u=dH

: gþa ¼
ga

g�

a� ¼ b
a

: f ¼ �ðdP=dxÞdH

q�u2=2
: ReM ¼

q�udH

g�

ð15Þ

where f is the Darcy friction factor, a* is the duct aspect
ratio, and g* is a reference viscosity, defined later, that is
specific to the EMPL models and that differs from the for-
mulations used with the MPL models. Substituting Eqs.
(15) into Eq. (11) yields
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o

oyþ
gþa

ouþ

oyþ

� �
þ o

ozþ
gþa

ouþ

ozþ

� �
¼ � f � ReM

2
ð16Þ

with boundary conditions, Eqs. (12), becoming

ouþ

ozþ

� �
ðyþ;zþ¼0Þ

¼ 0 :
ouþ

oyþ

� �
ðyþ¼0;zþÞ

¼ 0

uþ yþ; zþ ¼ 1þ a�

4

� �
¼ 0 : uþ yþ ¼ 1þ a�

4a�
; zþ

� �
¼ 0

ð17Þ
The global continuity equation, Eq. (13), is also cast in
dimensionless form giving

1 ¼ 16 � a�

ð1þ a�Þ2
Z 1þa�

4�a�

yþ¼0

Z 1þa�
4

zþ¼0

uþ dzþ dyþ ð18Þ

Finally, the shear rate, Eq. (14), in dimensionless form
becomes

_cþ ¼ ouþ

oyþ

� �2

þ ouþ

ozþ

� �2
( )1=2

ð19Þ

Next, a reference viscosity, g*, must be defined for use
with the EMPL models. The goal is to choose a functional
form that approaches the appropriate value when the duct
is operating in any of the five regions of the flow curve. For
pseudoplastic fluids, a reference viscosity that meets the
above requirement is

g� ¼ g0 � g1
1þ g0

gP

þ g1 ð20Þ

Eq. (20) may be written in terms of the MPL shear rate
parameter, b0, defined in Eq. (4), and of an analogous
parameter, b1, defined as

b1 ¼
g1
gP

¼ Reg

Re1
ð21Þ

where Re1 is the Newtonian Reynolds number based on
g1. Eq. (20) then becomes

g� ¼ 1þ b1
1þ b0

� �
� g0 ð22Þ

Similarly, for dilatant fluids g* may be defined as

g� ¼ g1 � g0

1þ g1
gP

þ g0 ¼
1þ b0

1þ b1

� �
� g1 ð23Þ

The terms in brackets in Eqs. (22) and (23) may be defined
as a parameter, b*

b� ¼ 1þ b0

1þ b1
¼ b0

b1
� Re0 þ Reg

Re1 þ Reg

ð24Þ

where the coefficient b0/b1 evaluates to the limiting viscos-
ity ratio, g0/g1, and the remainder of the right hand side is
a function of the limiting Reynolds numbers. The defini-
tions of the reference viscosities then become

n 6 1 : g� ¼ g0

b�
: n P 1 : g� ¼ b� � g1 ð25Þ
Eqs. (25) may be shown to approach the correct appar-
ent viscosity in all regions, with the value in the transition
regions equal to the MPL reference viscosities. Thus b* is
the appropriate shear rate parameter for EMPL models
and its value determines where the duct is operating. That
is, b* performs the same role for solutions that use the
EMPL models that b0 performs for solutions that use the
MPL models.

For pseudoplastic fluids, b* ranges between 1 and b0/b1,
the endpoints indicating operation in the low shear rate and
the high shear rate Newtonian regions, respectively. The
power law solution is reached if g0 differs sufficiently from
g1 in which case the viscosity in the power law region is such
that g0� gP� g1. This leads to b0� 1 and b1� 1 so that
b* approaches the value of b0. Then, for a fixed value of
b0/b1, b* may be found by substituting b* for b0 and
b* � (b1/b0) for b1 in the right hand side of Eq. (24), giving

b� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b0=b1

p
) log b� ¼ 1

2
logðb0=b1Þ ð26Þ

That is, the power law value occurs at the midpoint of the
log(b*) range. Analogous arguments and conclusions apply
for dilatant fluids, noting that there the valid range of b* is
reversed (i.e., b0/b1 to 1).

With the shear rate parameter defined, the EMPL mod-
els, Eqs. (9) and (10), may be cast in dimensionless form in
terms of b*, b0, b1, and _cþ giving

n 6 1 : gþa ¼ b� � 1þ b1 � ð _cþÞ
1�n

1þ b0 � ð _cþÞ
1�n

( )
:

n P 1 : gþa ¼
1

b�
� 1þ b0 � ð _cþÞ

1�n

1þ b1 � ð _cþÞ
1�n

( )
ð27Þ

Thus, the apparent viscosities in dimensionless form are the
reciprocals of each other.

The dimensionless momentum equation with boundary
conditions, Eqs. (16) and (17), may then be solved simulta-
neously with the dimensionless global continuity equation,
Eq. (18), utilizing Eq. (27) to evaluate the dimensionless
apparent viscosity depending on the fluid type. This results
in the evaluation of f � ReM. Four parameters remain: The
duct aspect ratio, a*, the flow index, n, the shear rate
parameter, b*, and the limiting viscosity ratio, b0/b1. It
should be noted that choosing b* and b0/b1 fixes the values
of b0 and b1 via Eq. (24) as detailed in the algorithm
below. The section that follows describes the numerical
solution to the above equations and presents the results
along with a discussion.
3. Results and discussion

3.1. The numerical scheme

The problem was discretized and solved numerically
using a finite volume scheme. A uniform rectangular mesh
was utilized with zero-thickness control volumes at the



Fig. 3. f � ReM solution for a* = 1.000. a – low shear rate Newtonian value for dilatant fluids with b0/b1 = 10�3, b – high shear rate Newtonian value for
dilatant fluids, low shear rate Newtonian value for pseudoplastic fluids, and solution for Newtonian (n = 1) fluids, c – high shear rate Newtonian value for
pseudoplastic fluids with b0/b1 = 103, d – power law value for n = 0.5, e – power law value for n = 1.5, and f – minimum value of f � ReM for a
pseudoplastic fluid with b0/b1 = 10 and n = 0.5.
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boundaries of the domain. The global continuity equation,
Eq. (18), was discretized using an area integral formulation
of the trapezoidal rule. The resulting set of algebraic equa-
tions was solved using the LSLXG routine (in Version 5.0
of the IMSL Fortran Numerical Library, Visual Numerics,
Inc.), a sparse matrix routine that utilizes Gaussian elimi-
nation to solve systems of simultaneous equations. The
solution then proceeded as follows:

1. Select run parameters (a*, b0/b1, n, b*, mesh density,
convergence criteria, etc.).

2. For each value of b*:
a. Use the velocity distribution, u+(y+,z+), from the

previous, converged b* data point to initialize the
velocity distribution for the current value of b*.

b. Calculate the value of b1 from Eq. (24) by substitut-
ing b1 � (b0/b1) for b0 and solving for b1. Then
calculate the value of b0 from b0 = b1 � (b0/b1).

c. Calculate g�a using Eq. (27) and update the coefficient
matrix.

d. Solve the system of algebraic equations as described
above.

e. Check for convergence at each node. If converged,
then store the data and proceed to Step 3. Otherwise,
return to Step 2c using the latest velocity values.
1 Data as reported by Hartnett and Kostic [6].
3. Next value of b*.
The above algorithm was used to calculate the values of
f � ReM, reaching converged values generally within ten
iterations per data point. Mesh refinement studies showed
that solutions became practically independent of mesh den-
sity for densities of 100 � 100 nodes, with increases in mesh
densities of 50% in each direction generally yielding
changes of 0.02% or less. The exception was the parallel-
plate duct which required a 350 � 350 mesh to achieve
results that were practically independent of mesh density.

To validate the program, calculated values were com-
pared to the numerical results of Park et al. [5], Syrjälä
[7], Gao and Hartnett [8], Wheeler and Wissler [9], Chan-
drupatla [10]1, and Schechter [11]1. There was good agree-
ment throughout, generally within 0.5%, except for the
Park et al. study where the present data agreed within
4.1%. However, the Park et al. study used an approximate
expression for the shear rate that eliminated the cross coor-
dinate term in Eq. (19). This simplification accounts for
their values being higher than those from this and the other
studies. Furthermore, computed data were compared to
available analytical solutions: the Newtonian f � Re solu-
tions for rectangular and parallel-plate ducts, and the
power law f � Reg solution for parallel-plate ducts. For
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rectangular ducts, all Newtonian values were well within
0.01% of the corresponding analytical values, and they
were within 0.07% for the parallel-plate duct. The power
law values for the parallel-plate duct were all within 0.3%
of the analytical solutions. With the program thus vali-
dated, the rectangular duct problem was solved.

3.2. Numerical solution of the rectangular duct problem

The f � ReM problem was solved numerically for rectan-
gular ducts of five aspects ratios, a* = 1.00, 0.75, 0.50, 0.25,
and ?1 (the latter calculated with a* = 105), with compu-
tations performed for both dilatant and pseudoplastic flu-
ids. For dilatant fluids, values of 10�4, 10�3, 10�2, and
10�1 were selected for b0/b1 and for each, solutions were
calculated for n = 1.1, 1.2, 1.3, 1.4, and 1.5. Similarly, solu-
tions for pseudoplastic fluids were obtained for b0/
b1 = 101, 102, 103, and 104 and n = 0.5, 0.6, 0.7, 0.8, and
0.9. Thus, 40 curves were developed for each aspect ratio,
each curve spanning the full range of the shear rate param-
eter b*, and each comprised of 100 equally spaced, com-
puted data points. The solutions for a* = 1.00 and
a* ?1 are presented in Figs. 3 and 4, respectively. The
solid curves are the numerical data computed in this study
whereas the analytical Newtonian values are denoted by
the phantom lines. Referring to Fig. 3, it should be noted
that, as expected, the solutions for dilatant fluids reside
above the Newtonian line at values of log(b*) less than 0,
Fig. 4. f � ReM solut
and that those for pseudoplastic fluids are below the New-
tonian line at values of log(b*) greater than 0. Furthermore,
the solutions are grouped in families of curves with each
family being identified by the non-zero value of log(b*)
where the curves intersect the Newtonian line, with that
value corresponding to the limiting viscosity ratio, b0/b1.
For example, all curves that intersect the Newtonian line
at Point ‘‘a” in Fig. 3 belong to dilatant fluids with a lim-
iting viscosity ratio of b0/b1 = 10�3, whereas those that
intersect at Point ‘‘c” belong to pseudoplastic fluids with
a limiting viscosity ratio of b0/b1 = 103. All curves begin
and end at the Newtonian line as predicted, with the left-
most point of intersection corresponding to ducts operat-
ing in the low shear rate Newtonian region and the
right-most intersection corresponding to those operating
in the high shear rate Newtonian region. Thus, Point ‘‘b”

in Fig. 3 is for duct flows of dilatant fluids operating in
the high shear rate Newtonian region as well as for duct
flows of pseudoplastic fluids operating in the low shear rate
Newtonian region. The curve for Newtonian fluids (i.e.,
n = 1) degenerates to a single point located on the Newto-
nian line at log(b*) = 0 (i.e., Point ‘‘b” in Fig. 3) because
for Newtonian fluids, g0 = g1 = gN thus giving b0/b1 =
1. The valid b* range then collapses to a point located at
b* = 1.

Each curve has an extremum; points to the left of the
extremum are the values of f � ReM in the low shear rate
transition region, and those to the right are the values of
ion for a* ?1.



Table 1
Correlation equation and respective constants for evaluating f � ReM

a* f � Re f � Reg values at n =

0.5 0.6 0.7 0.8 0.9

Correlation equation for pseudoplastic fluids

f � ReM ¼ b� � ðf � ReÞ �
1þ b1 � f � Re=f � Reg

� �
1þ b0 � f � Re=f � Reg

� �
( )

1 56.9083 23.3302 27.9481 33.4295 39.9434 47.6903
0.75 57.9028 23.5505 28.2516 33.8439 40.5039 48.4405
0.5 62.1922 24.5129 29.5800 35.6552 42.9445 51.6924
0.25 72.9311 27.1130 33.0970 40.3708 49.2055 59.9276
?1 96.0000 32.8086 40.8683 50.7593 62.9093 77.8401

1.1 1.2 1.3 1.4 1.5

Correlation equation for dilatant fluids

f � ReM ¼
f � Re

b�
� 1þ b0 � ðf � Re=f � RegÞ

1þ b1 � ðf � Re=f � RegÞ

	 


1 56.9083 67.8739 80.9241 96.4521 114.926 136.898
0.75 57.9028 69.1804 82.6267 98.6539 117.753 140.504
0.5 62.1922 74.7866 89.8937 108.003 129.697 155.664
0.25 72.9311 88.6790 107.734 130.754 158.514 191.913
?1 96.0000 118.736 146.433 180.441 222.178 273.368
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f � ReM in the high shear rate transition region. For
pseudoplastic fluids, the curves have a minimum (maxi-
mum for dilatant fluids) located at the midpoint of the
log(b*) range as predicted by Eq. (26). However, the mag-
nitude of f � ReM reaches the power law value (i.e.,
f � ReM = f � Reg) only when the limiting viscosity ratio,
b0/b1, is sufficiently large (sufficiently small for dilatant
fluids). For practical purposes this occurs when b0/
b1 J 104 for pseudoplastic fluids and when b0/
b1[ 10�4 for dilatant fluids. Thus, the Points ‘‘d” and
‘‘e” in Fig. 3 are the power law values for n = 0.5 and
n = 1.5, respectively. This implies that care must be exer-
cised when using the power law or modified power law
solutions even in those instances where the shear rates
throughout the entire flow field are in Region III. If the
fluid is weakly pseudoplastic or weakly dilatant, then
f � ReM may never reach the power law value. For exam-
ple, consider the flow of a pseudoplastic fluid in a square
duct (a* = 1.000, Fig. 3) with a limiting viscosity ratio of
b0/b1 = 10 and a flow index of n = 0.5. The minimum
value of f � ReM that this system can achieve is
f � ReM = 35.877 which occurs when the system is operat-
ing at log(b*) = 0.5 (Point ‘‘f” in Fig. 3). However, the
power law value, f � Reg, for a pseudoplastic fluid with a
flow index of n = 0.5 is f � Reg = 23.330 (Point ‘‘d” in
Fig. 3). Thus, at best the power law solution underesti-
mates the pressure drop by 35% if the system were operat-
ing at log(b*) = 0.5, and underestimates it by larger
margins if the system is operating elsewhere.

Correlation equations were fit to the computed data,
and these are given in Table 1 along with the required con-
stants. The equations are valid within the full range of b*

(i.e., for b* = 1 to b0/b1), endpoints excluded. At the end-
points, the expressions correctly approach the Newtonian
values as may be verified by performing the limits as b*

approaches both b0/b1 and 1. Values from the correlation
equations were compared against the computed numerical
data for all duct aspect ratios. Curves from the equations
run outside of the computed data with a maximum error
of 3.2% for n ranging from 0.70 to 1.30, and 8.0% for
0.50 6 n < 0.70 and 1.30 < n 6 1.50. They therefore appear
to be satisfactory for most predictive work when
1.30 6 n 6 1.50 and 0.25 6 a* 6 1.00. However, they are
not recommended in the case of parallel-plate ducts (i.e.,
a* ?1) since there they produce significantly larger
errors, nearly 20% in worst case.

4. Conclusions

The current study details the evaluation of f � ReM for
flows of hydrodynamically fully developed pseudoplastic
and dilatant fluids in rectangular ducts. The analysis uti-
lized constitutive equations that were obtained by combin-
ing the MPL models for pseudoplastic and dilatant fluids.
This produced equations that extend the valid range of
the MPL models to the entire shear rate range while requir-
ing only the limiting Newtonian viscosities, g0 and g1, the
power law fluid consistency, K, and the flow index, n, in
their definitions. A shear rate parameter was then defined
whose value determines the flow regime where the duct is
operating. Solving for f � ReM throughout the valid range
of this shear rate parameter yielded solutions for all opera-
tional cases, including when the duct is operating in the high
or low shear rate Newtonian regions, in the power law
region, or in the low or high shear rate transition regions.
The solutions in the high shear rate transition region are
particularly important since there appear to be no data pub-
lished in this regime. Also, as demonstrated above, f � ReM
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values for pseudoplastic fluids reach the power law value
only if the ratio of the limiting Newtonian viscosities is suf-
ficiently large (sufficiently small for dilatant fluids). Thus,
for weakly non-Newtonian fluids, utilizing the power law
values may produce significant errors even in those cases
where the shear rates in the flow field are in Region III.
Finally, correlation equations are provided that cast the
f � ReM results in convenient form for numerical work.
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